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ABSTRACT

Recent results on digital straightness and convexity are
reviewed, and it is shown that the criteria for a set of lattice
points to be the digitization of a convex set, or for a digital
arc to be the digitization of a straight line segment, depend
critically on the definition of digitization that is used.
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1. Introduction. Image processing and pattern recognition

[11 are often concerned with classifying shapes or patterns

that appear in pictures, and the classification is often

based on geometrical properties of the patterns. For example,

in a picture of a nuclear bubble chamber, we may want to

classify the particle tracks as being straight line segments,

circular arcs, etc., in order to identify the particles that

gave rise to these tracks. As another example, in a photo-

micrograph of a blood smear, we may want to determine whether

the nucleus of a white blood cell is convex or has :.oncavities

in order to identify which type of cell it is.

What makes such tasks nontrivial is that computers can

only deal with pictures that have been "digitized," i.e., cn-

verted into arrays of lattice points, and it is not always

obvious how to recognize that a set of lattice points must

have arisen from a real pattern that has a given geometric

property. For example, how do we characterize sets of lattice

points that are the digitizations of real straight line seg-

ments? This and some related questions will be discussed in



i1 this paper. In order to treat them, we must first define

more precisely what we mean by "digitization," and intro-

duce some basic "digital picture" terminology. As we shall

see, the results depend strongly on the definitions of digi-

tization that we use.

"1

I



2. Digitization of bounded subsets

Let S be a bounded subset of the plane. For purposes of

computer analysis, it is customary to represent S by a finite

set of lattice points, i.e., points with integer coordinates.
A

This set S is called the digital image of S, and the mapping
A

that takes S into S is called digitization.
A
S can be defined in a number of ways; we list several

of them here:
A

a) S is the set of lattice points contained in S; this

is called the subset digitization of S.
A

b) S is the set of lattice points such that S comes closer
1

than city block distance 1 to them - i.e., {(i,j)13(x,y)

ES: max(jx-ij,jy-jj)< }. This is called the open cell

digitization of S. (If we imagine an open unit square

["cell"] P0 centered at each lattice point P, we have
A 0

PES iff SnP# 0.)

b') Analogous to (b), using half-open cells P*, e.g.,

.1 .1 , 1 1-

b") Analogous to (b), using closed cells P.

Note that by definitions (a-b), a nonempty set S can have an

empty digitization. In the course of this paper we will dis-

cover other advantages and disadvantages of the various defini-

tions.

A set T of lattice points is called 8-connected if for all

P,Q in T there exists a finite sequence P=P0,PI,...,Pn=Q of

points of T such that Pi is a horizontal, vertical, or diagonal

neighbor (for brevity: an 8-neighbor) of Pil', lfi:n.



If only horizontal and vertical neighbors ("4-neighbors") are

allowed, we call T 4-connected.

Proposition 1. If S is arcwise connected, then by definition
A

(a) or (b), S need not be 8-connected; by definition (b'),

it must be 8-connected; and by definition (b"), it must be

4-connected. II

Further properties of 4- and 8-connectedness are treated in

[2,3].
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3. Digitization of arcs

None of the definitions of digitzation given in Section 2

is entirely satisfactory if S is an arc. As we traverse an

arc A, we would like to define a sequence of lattice points

belonging to the digitization of A, and we would also like

the digitization of an arc to be connected. The connected-

ness requirement immediately rules out the subset and open

cell definitions (a-b); while if we use the closed cell defi-
A

nition (b"), the lattice points of A do not occur in a

simple sequence; when A leaves a cell through one of its cor-

ners, three new lattice points (at the centers of the other
A

cells sharing that corner) appear simultaneously on A. This

leaves only the half-open cell definition (b'), for which
A

the lattice points of A do in fact occur in sequence as A is

traversed. Each of these points is an 8-neighbor of the pre-
A

ceding one, so that A is determined by specifying a starting

point and a sequence of moves from neighbor to neighbor [4].
A

This approach provides a compact way of specifying A,

but it is somewhat wasteful in the sense that diagonal moves

occur with zero probability; when an arc leaves a cell, it

almost certainly does so along a side, not at a corner. For

this reason, a different definition of digitization has his-

torically been used for arcs, which we may call grid digitiza-

tion. Imagine the lattice points joined by a grid of lines;

thus as we traverse A, we cross a succession of grid lines.

(A



then A always stays inside a single cell.) Whenever we

cross a grid line, the lattice point (=grid line intersec-

A
tion) closest to the crossing point becomes a point of A.

If we cross halfway between two lattice points, we resolve

the tie by using, e.g., the lattice point that lies to the

right of A (in the sense that we are traversing it)*. This

grid digitization evidently defines a sequence of lattice
A

points in A as A is traversed, each an 8-neighbor of the pre-

ceding; but it is easily seen that diagonal neighbors now have

nonzero probability. A further advantage of grid digitization

over cell digitization will become apparent in the next section.

*Alternatively, we could resolve ties by rounding, but as
we shall see, the method defined here is preferable.

4
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4. Digital arcs

The finite set of lattice points B is called a digital

arc if

a) B is connected

b) All but two points of B have exactly two neighbors

in B

c) Two points of B, called the endpoints, have exactly

one neighbor in B

Note that this is two definitions in one, depending on whe-

ther we use the 4- or 8-definition for "neighbor" and

"connected."

Proposition 2. If B is a digital arc, and we use the subset,

open cell, or grid definition of digitization, then there
A

exists an arc A such that B=A.

Proof: If we start from one of the endpoints, go to its

neighbor, then go to the other neighbor of that neighbor (if

any), and repeat the process, we can keep on until we reach

a point that has no other neighbor, which must be the other

endpoint. It is not hard to see that since B is connected,

the sequence of points defined in this way is all of B. (If

a point in the sequence were connected to a point not in the

sequence, some point in the sequence would have to have a

third neighbor.) The polygonal arc A joining this succession

of points then evidently has B as its digitization by the

three definitions mentioned. Note that the Proposition is



not true for the other two definitions - e.g., the digital

8-arc {(O,O), (l,l)} is not the closed cell digitization of

any arc. I

A
Unfortunately, if A is an arc, A need not be a digttal

A
arc, since A may touch itself if A passes sufficiently close

to itself. However, we can prove

Proposition 3. If A is a straight line segment, and we
A

use the grid definition of digitization, then A is a digital

8-arc.
A

Proof: As we move along A, we visit the points of A in suc-

cession. It is not hard to see that the successive points
A A

of A (if distinct) are 8-neighbors, and that two points of A

cannot be 8-neighbors unless they are successive.

Proposition 3 does not hold if we use the subset or cell digi-

tizations, or even if we use the grid method but resolve ties
A

by rounding. For the subset or open cell method, A can evi-

dently be empty; and for the closed cell method, the line x=l±f or

y=j-_ has a double-thickness digitization. Even for the half-

open cell method, let A be the line through (I,!) with slope
A

-450; then A defined by the half-open cell method has a digi-

tization that is a 4-arc, not an 8-arc, since it contains the

lattice points ...,(i,0),(ii),(Oi),(0,2),(-I,2)..... Simi-

larly, let A be the line through (1,0) with slope 450, and let

A be defined by the grid method but with ties resolved by round-



A

ing down; then A is a 4-arc but not an 8-arc, since it con-

tains the lattice points (0,0),(i,0),(.,i),(2,1),... (The

same example works if we round up rather than down; and if

we round up in one coordinate and down in the other, we can

give an analogous example using a line of slope -45*.)

We are now ready to consider the question posed in the

title of this paper: Given a digital arc, how can we tell

whether it is the digitization of a straight line segment?

Note that any digital arc is always the digitization of things

that are not straight line segments, but we want to know when

it is also the digitization of a straight line segment.
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5. Straight digital arcs

A digital 8-arc B will be called straight if there exists
A

a straight line segment A such that A=B (using grid digitization).

Theorem 4. The following properties of the digital arc B

are equivalent:

a) B is straight

b) There exists no triple of collinear lattice points

P,Q,R (with Q between P and R) such that P,R are in

B but Q is not

c) For any lattice points P,R of B, and any point (x,y)

on the line segment PR, there exists a lattice point

(i,j) of B such that max(Jx-iJ,Jy-jJ)<l. 11

It is not hard to show that if B is straight, it has proper-

ties (b-c). Conversely, we can easily show that if B has

property (b) or (c), its sequence of moves from neighbor to

neighbor can involve at most two directions, which can only

differ by 450, and that at least one of these directions has

only isolated occurrences in the sequence; thus the sequence

consists of runs in a given direction, separated by single

moves in an adjacent direction. Now if property (b) or (c)

holds for B, it also holds for the digital arc B' obtained

by deleting the last point of B; hence by induction, B' is
A

straight, say B'=A'; and whether the last point P of B extends

a run or starts a new run, one can find an A' such that P is on



the digitization of an extension of A'. For the details of

a proof that (a) and (c) are equivalent, see [5]. Other

aspects of digital straightness are treated in [6-121.

A set of lattice points for which (b) holds will be said

to have the collinearity property, and a set for which (c)

holds will be said to have the chord property. At first

glance, (b) and (c) seem tedious to verify; but in fact, they

need only be checked for pairs P,R of lattice points of B

that are run ends, and (as regards (c)) for points (x,y)

that have the same coordinate as a run end; the details are

straightforward. Theorem 4 is not true for other definitions

of digitization; {(O,Q),(1,1)} and {(0,l),(1,0)} are digital

8-arcs, and evidently have properties (b-c), but as we have

already seen, by the other definitions they are not both digi-

tizations of straight line segments.

'4
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6. Digital convexity

The conditions of Theorem 4 turn out to be of interest

for other reasons; in fact, they are precisely the conditions

for a set of lattice points to be the digitization of a con-

vex set, if we use the subset definition of digitization. To

begin with, it can be shown [13-17] that

Theorem 5. The following properties of a finite set T of
lattice points are equivalent:

a) T has the collinearity property

b) T has the chord property

c) The convex hull of T contains no lattice point in the

complement of T. ii

T is called digitally convex if there exists a convex
A

set S such that S=T.

Theorem 6. T is digitally convex (using the subset definition

of digitization) iff it has the properties of Theorem 5. i

For other definitions of digitization, Theorem 6 does not

hold. If we use the cell definitions, the conditions of Theorem

5 are necessary but not sufficient. As an example, let T be



Then T has the properties of Theorem 5, but is not digitally

convex by any of the cell definitions. Partial characteriza-

tions of digital convexity using various definitions of digi-

tization can be found in 118-25].

We can also prove

Theorem 7. T is digitally convex (subset definition) iff for

any two lattice points P,Q of T there exists a straight digi-

tal 8-arc B such that P,Q E B c T. II

The convex hull property in Theorem 5 can be used as the

basis of an algorithm for determining whether a given set T

of lattice points is digitally convex We first construct

the convex hull of T; in fact, it suffices to construct the con-

vex hull of the set of "corner points" of T (points of T that

have two horizontal or vertical neighbors in the complement of

T that are diagonally adjacent to each other). We then check

whether the convex hull contains a point of the complement;

in fact, it suffices to check whether it contains a "corner

point" of the complement. If we represent T by a scheme called

run-length coding (see [1]), the entire process can be carried

out in time on the order of M, the image side length (i.e.,

T is contained in an M by M array of lattice points). A similar

procedure can be used to determine whether T is a straight digi-

tal arc: first verify that it is a digital arc, then check

that it is convex.



It should be noted that the situation is more complex

in three dimensions [26]. For example, it can be shown

that when we use a method analogous to open cell digitiza-

tion, the chord property is sufficient but not necessary for

a set of lattice points in three dimensions to be the digi-

tization of a convex object. Three-dimensional digital geo-

metry is a subject of rapidly growing interest with the increas-

ing need to process three-dimensional data arrays, e.g., as

obtained by computed tomography.

1| n .. . . I I lll I I



7. Concluding remarks

Determining whether a sequence of lattice points could

be the digitization of a straight line segment, or a set of

lattice points the digitization of a convex object, is of

practical interest in digital image processing and pattern

recognition. These problems turn out to have neat solutions

for some definitions of digitization, but not for others.

Thus the method of digitization used to represent planar sub-

sets in a computer can have unexpected implications with

respect to determining geometric properties of the subsets.

4



References

1. A. Rosenfeld and A. C. Kak, Digital Picture Processing,
Academic Press, New York, 1976.

2. A. Rosenfeld, Picture Languages, Academic Press, New York,
1979, Chapter 2.

3. A. Rosenfeld, Digital topology, this MONTHLY 86, 1979,
621-630.

4. H. Freeman, Computer processing of line drawing images,
Computing Surveys 6, 1974, 57-97.

5. A. Rosenfeld, Digital straight line segments, IEEE Trans.
Computers 23, 1974, 1264-1269.

6. R. Brons, Linguistic methods for the description of a
straight line on a grid, Computer Graphics Image Processing
3, 1974, 48-62.

7. G. Bongiovanni, F. Luccio, and A. Zorat, The discrete equa-
tion of the straight line, IEEE Trans. Computers 24, 1975,
310-313.

8. H. Klaasman, Some aspects of the accuracy of the approxi-
mated position of a straight line on a square grid, Computer
Graphics Image Processing 4, 1975, 225-235.

9. C. Arcelli and A. Massarotti, Regular arcs in digital con-
tours, Computer Graphics Image Processing 4, 1975, 339-360.

10. J. Rothstein and C. Weiman, Parallel and sequential speci-
fication of a context sensitive language for straight
lines on grids, Computer Graphics Image Processing 5, 1976,
106-124.

11. M. Gaafar, Convexity verification, block-chords and digital
straight lines, Computer Graphics Image Processing 6, 1977,
361-370.

12. C. Arcelli and A. Massarotti, On the parallel generation of
straight digital lines, Computer Graphics Image Processing 7,
1978, 67-83.

13. C. E. Kim, On the cellular convexity of complexes, IEEE
Trans. Pattern Analysis Machine Intelligence, in press.

14. C. E. Kim and A. Rosenfeld, Digital straight lines and con-
vexity of digital regions, ibid.



15. C. E. Kim, On cellular straight line segments, Computer
Graphics Image Processing, in press.

16. C. E. Kim and J. Sklansky, Digital and cellular convexity,
submitted to Pattern Recognition.

17. C. E. Kim, Digital convexity, straightness, and convex
polygons, TR-1055, Computer Vision Laboratory, Computer
Science Center, University of Maryland, College Park,
MD, May 1981.

18. J. Sklansky, Recognition of convex blobs, Pattern Recog-
nition 2, 1970, 3-10.

19. G. U. Montanari, On limit properties in digitization
schemes, J. Assoc. Comp. Mach. 17, 1970, 348-360.

20. L. Hodes, Discrete approximation of continuous convex
blobs, SIAM J. Appl. Math. 19, 1970, 477-485.

21. J. Sklansky, R. L. Chazin, and B. J. Hansen, Minimum-
perimeter polygons of digitized silhouettes, IEEE Trans.
Computers 21, 1972, 1233-1239.

22. J. Sklansky, Measuring concavity on a rectangular mosaic,
IEEE Trans. Computers 21, 1972, 1355-1364.

23. C. Arcelli and L. Cordella, Concavity point detection by
iterative arrays, Computer Graphics Image Processing 3,
1974, 34-47.

24. J. Sklansky, On filling cellular concavities, Computer
Graphics Image Processing 4, 1975, 236-247.

25. J. Sklansky, L. P. Cordella, and S. Levialdi, Parallel
detection of concavities in cellular blobs, IEEE Trans.
Computers 25, 1976, 187-196.

26. C. E. Kim, Convex digital solids, submitted to IEEE Trans.
Pattern Analysis Machine Intelligence.

.j



UNCLASS IF IED
SECURITY CLASSIFICATION OF THIS PAGE (h.., Does Enlered)

REA INTUCIN

REPORT DOCUMENTATION PAGE . BEFORE COMPLETIG FORM

I. RE[POR T mumN 2. GOVT ACC SSION NOC. ReirS CATALOG NUMMER

AFOURTR. 8 1 -0 6 5 8
4. TITLE (mid ubtitle) . TYPE Of REPORT 6 PEROD COVERED

How a Digital Computer Can Tell that a Technical
Straight Line is Straight

S. PERFORMING ONG. REPORT NUMBER

TR-1072
7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(&)

Azriel Rosenfeld AFOSR-77-3271

Chul E. Kim

9. PERFORMING ORGANIZATION MAMIE AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Computer Vision Laboratory AREA A WORK UNIT NUMBERS

Computer Science Center I/

University of Maryland 6//i 325f'9-
College Park, MD 20742

It. CONTROLLING OFFICE NAM ANO ADDRESS 12. REPORT *ATE

Math & Info. Sciences, AFOSR/NM July 1981
Bolling AFB 3. NUMBER OF PAGES

Washington, DC 20332 17
14. MONITORING AGENCY NAME & AOORESS(If diflgrmet frm Controlling Ollie*) IS. SECURITY CLASS. (of this ropovd)

ISo. OECLASSI FICATION/OOWNGRAOING

SCHEDULE

1. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract aciered in Block 30. i dlfrmtw tret Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue an fewer*. odde iI noeeM, aid Identify by block nmber)

Image processing Straightness
Pattern recognition Digitization
Digital geometry
Convexity

20. ABSTRACT (Continu, on reverse side If nec..wv And Idefttif b? black fmoaer)

Recent results on digital straightness and convexity are reviewed
and it is shown that the criteria for a set of lattice points to
be the digitization of a convex set, or for a digital arc to be
the digitization of a straight line segment, depend critically
on the definition of digitization that is used.

.DD A 1473 EoITON OF I NOV 6S i OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS P AGE (WhIe Date Enterid)


